
MTexturedStyleEditor - User Guide

[© DarkStar & MeldaProduction 2013]

MeldaProduction software including all plugins uses a proprietary user interface systém, which
allows redefining its appearance, size and sometimes even behaviour. This makes the plugins way
more adaptive and user friendly compared to other plugins on the market. This guide is designed for
those of you, who want to create their own styles for the plugins.

A style is a file containing all the resources required to render each component of the user interface.
It contains images, fonts, textures, graphical settings and more. MTexturedStyleEditor is an
advanced tool for creating these styles. Originally we developed it only for our own use, so it is a
little "hi-tech", but some of you have already shown that it is quite usable ;).

The good news is, that once you create a style, it will work with all plugins and it will preserve all
the marvelous features the plugins have. And even better, if your style is good enough, we shall
include it in further version (or share it somehow) and you will get a compensation of course ;).

The bad news is that creating styles is pretty complicated. It's far from creating simple skins
containing a background image and a few knob images. The styles must be able to adapt to any
plugin, any layout, any size, any control inside another control... But, well, it's not that hard after
all, you will see.

Sometimes the Editor will come up with some weird message, which would probably mean nothing
to you, but that's just how it is with hi-tech tools :).

Installation

The Style Editor has no installer, instead you simply download an archive from our website and
extract it somewhere. Before you start running anything, copy the supplied fonts from "Fonts"
subdirectory into your system fonts directory:
Windows: C:/Windows/Fonts
Mac: /Library/Fonts

Then you can run the Editor itself:
Windows: MTexturedStyleEditor.exe
Mac: MTexturedStyleEditor.app

What you see now is probably pretty scary, so maybe you should close the Editor and continue
reading instead :).

The archive also contains a set of "mtexturedstyle" files. Despite their names these are not the
styles, these are so-called style definitions. They contain all resources of the style, the Editor can
load them, but they are too big and impractical for use by the plugins. It's like when you edit a text
in Word, you get the DOC file, which almost nothing understands, so at the end you convert it to
PDF. Similarly, you edit your styles in MTexturedStyleEditor, your temporary results will be called
"mtexturedstyle" and when you are ready, you export it into the resulting "mrf" file, which is the file
type used by the plugins. But we will get to that later.

file:///D:/Programming/Windows/Fonts

For now, just run the Editor. Look at the top right corner:

Over on the right-hand side of the Main toolbar are 8 buttons:
Eye, Copy, Paste, Load, Save, Minimise, Full-screen / Restore, Exit

Many of these buttons are used throughout the Style Editor and their general functions are described
later. For now, click on the "Load" button and select any of the "mtexturedstyle" files. The Editor
will probably look quite different now. So let's skip any editing and just look at the style itself. First
we need to Export it – look at the main toolbar:

The only button that will work at this moment will be "Export as". It will let you choose any path
on your hard drive and name of the style. Then it will create quite a few files in that directory,
perform some housekeeping actions and voila the "mrf" is there, the style has been compiled. After
that moment, every time you click the "Export" button, the same action will happen, but the Editor
will not ask you for the style path anymore, just overwrite the previous one. To be safe, always click
"Export as" the first time after you load an "mtexturedstyle" file; after that, click "Export".

It may be useful to choose the predefined style paths the plugins are using, so that you can check the
styles immediately in the plugins. Hence you may want to export the style to this path:

• Windows Vista/7/8: C:\Users\
{username}\AppData\Roaming\MeldaProduction\MTexturedStyles

• Windows XP: C:\Documents and Settings\{username}\Application
Data\MeldaProduction\MTexturedStyles

• Mac: ~/Library/Application support/MeldaProduction/MTexturedStyles

Now click any of the "Test" buttons. Each will open a testing window showing the style in action.
Each is different and are defined by the "window0.xml".. files in the Editor directory. If you known
XML a little, you could probably create your own test windows easily ;). If you used the predefined
style paths, you can actually open any plugin now and select your new style. If you exit the Editor
and start it again, it will remember the state and loaded style, making it easy-to-use.

One more button in the main toolbar remains – "Import". This one actually opens the "mrf" file.
This is not always possible, so it's not really an ideal approach, but if you get your hands on
someone else's style, you can use this to open it, but always assume that it may not be completely
loaded. Always try to use the style definitions (the "mtexturedstyle" file) instead.

Well, now you know how to load/save a style definition, how to export the resulting mrf style from
the Editor and to see it in action. It's time to edit your new style!

Getting started
The GUI engine essentially defines several component types, such as a knob, button or window. If
you look at the left side of the Editor, you can see a huge, almost never ending tree, of these
components. Such a tree may look be scary at first, the good news however is that these are almost
the same. For example, a window works more or less in the same way as a button, however odd that
may sound. In the end you can create a style, where everything will look like a button, not that it
would be a good idea probably :).

The Browser, on the left-hand side, lists all the elements of the style that can be edited, in a simple
expandable / collapsible hierarchy. Click on the [+] to expand an item or on the [-] to collapse it.
The first section in the Browser is the Global Style settings. This section is a bit different, it's the
only one which doesn't specify any controls and rather contains some global parameters and
resources.

Before we get to it, let's check the titles with caption buttons, as these are just everywhere:

The Editor is hierarchical and the good news is that you usually can save/load any section as a
preset/file, use clipboard for it etc. So, you can easily export the whole knob definition from one
style and load it to another. Or just one image of the knob...

It is worth remembering that you can point mouse to any place and click the "F1" button to get
extended help. The Editor isn't documented very much though, so it will be useful only for specific
places – e.g. a mouse above a slider shows some advanced editing techniques:

• Click/drag using left mouse button to change the value,
• Right-click selects the default value,
• Mouse wheel, arrow keys and vertical drag using middle mouse button or using left mouse

button while holding Ctrl modifies the value more accurately,
• Home key configures the minimal possible value,
• End key sets up the maximal one.
• Shift + left mouse button pops up a dialogue to let you type in the value, enter it by clicking

the displayed keyboard or edit the value as text.
• Shift + Tab / Tab selects the previous or next field.

Global style settings item
As I explained before, this one is a very special item, which doesn't specify any component, but
only some global properties and resources. So let's explain what these mean.

Default control sizes, Minimal control sizes

The style engine is pretty smart – it can determine minimum sizes based on how each component is
painted, what is inside it, even its surroundings. And each plugin can restrict the sizes as well.
However the style may want to say something about the component sizes too ;).

Default sizes are just, well, defaults. In most cases it will be 0, meaning that "you don't care" and
default size should be as small as possible as long as everything fits inside it.

Minimal size is really a minimum and the component can never be smaller. Well, there are
circumstances, where everything fails and it must fit, but that's not relevant here. Minimal size of
zero means that the component size is restricted only by the minimal size on the element’s images
and contents. But sometimes you want each component to be bigger, intentionally.
For example, for an "Edit" (text input field) painted using a rectangle with rounded corners with
radius 10 pixels, the control must be at least 20 x 20. In the example above, Edit X is 64 – that's
simply because an "edit", text input field, looks weird when too thin, so this ensures it will always
be at least 64 units wide. Note that it doesn't specify the vertical minimum, because an edit usually
contains a text, which will set the minimum height.

I said units, right? Yes, these are not pixels. Well, they are, but only if the style is not resized. As you
know, the user can change colors and size of the style. Normally it is 100%, in which case these are
pixels indeed. However when a user wants bigger fonts and just everything bigger, he sets 200%
and everything will be twice as big, in this case Edit X will become 128. Always remember the
resizing, it doesn't apply only here.

Icons, Bitmaps, Control checkbox

The plugins often need some standard images, "?" for help buttons, "X" for close buttons and so on.
The style needs to provide these. You may just leave the images from the predefined styles, these
are all the same. Currently these are colored but usually use only black and white. Not ideal, but has
the advantage that it fits almost everything – you can see the icon on black background, white
background, even pink background if you want...

To load a different image, click on the Folder button which opens a Load Image dialogue. .jpg. .png
or .tga image files can be used.
Icons are usually very small as they are used inside components. If they were bigger, the
component would need to be bigger as well. So in most cases these are just 10x10, 12x12 or 14x14.
Bitmaps on the other hand are usually used in alert popups and are usually 64x64.
Control checkbox is used in listbox/tree views with checkboxes in each item. These should be
fairly small, they must fit each item in the list, so by default these are 8x8.

Cursors

These are very similar to the icons and bitmaps, but the purpose is obviously very different. The

principles are exactly the same, but the images are shown magnified and there is a little red cross
inside each of them, the so called "hot spot". This marks the place the cursor is actually pointing to.
You can change the position simply by clicking into the image. Cursors are usually 32x32 pixels
square and we should rather keep it that way as the behaviour is a little complicated due to different
implementation on each operating system.

Style Metrics

These values do affect various aspects of the style, but you will rarely need to change them. It will
probably be the most mysterious part of the Editor :).

Anyway most of these values are pretty self explanatory. But what may be useful the most for you
are these:

• deflayoutspace – space between controls
• defaultlistboxitemheight, defaulttreeitemheight – default size of items in list/tree views
• listboxitemcheckboxsize, treeitemcheckboxsize – sizes of the checkbox in list/tree views,

which should most likely correspond to the images in "Control checkbox" section.
• alphaenabled, alphadisabled – opacity of text/graphics when a particular control is in

enabled or disabled state

Colours

As you know, by clicking "Settings" on any of the plugins and selecting "Style" the user can not
only change style dimensions, he can also change 4 colors, called "style colors". You will use these
colors later for example to alter the colors of knobs according to one these style colors. For now,
here you can set the default 4 colors.

Icon color is a special color, which can alter colors of the "icons". For black/white icons it does
nothing. But imagine the icons are colored, mostly green, and you design a style, which is mostly
blue. Then you can either accept the fact that your icons will be green on blue, or use this color to
"colorize" the icons to blue as well.

Disabled/Focused/Highlighed/Clicked alpha – controls opacity of shapes painted using the colors
in different states of each component. For example, if a button is disabled, it is usually "less visible"
meaning it has lower opacity. But then the contents of the button, the text inside it for example,
should be less visible as well, right? So you just use the Disabled alpha property.

Text/Shape/Highlight/Light/Dark – despite our original design only Text & Shape colors are
currently used and they specify the default colors of text and graphical objects. However it is
recommended to keep the others default, just in case we need to use them.

Red/Green/Blue – these are special colors used in very specific areas. For example, you may
design a very colorful style based mostly on orange color. Then there will be a particular graphical
Editor, e.g. spectrum analyzer, requiring to show something "red". The true red color may look quite
ugly on the orange background. So instead we defined 3 colors, which you can adjust to ensure they
look good inside your style and the plugins use these instead of true red/green/blue, which just may
not look good in the style.

Content Rendering

This element controls how contents (text/graphics) of each component will be rendered. Text
shadow alpha is pretty self-explanatory. Invert parameter is less obvious, but it is very important.

Imagine you have a control, which has a background completely whitened. Then if the "shape"
colour is black, you would not want it inverted (text and shapes should be black, so that it is
visible). If the background is black, you would want the text/shapes inverted to white, so that they
are visible. But if the control doesn't have a background (that is, it is transparent), you would not
know which to choose! So set the value to "Proceed to parent", and the Style Editor will check the
control underneath to ascertain whether the colour of the text/shapes should be inverted.

These screenshots show the effect on the
button text of setting the ‘button’ value
to ‘Do not invert’, ‘Invert’ and ‘Proceed
to parent’ respectively.

Fonts

The plugins take all resources from the style file, thus no system fonts are used directly. This
ensures the style will look the same everywhere and you can choose fonts that will look good in the
style. Fonts are one of the most important aspects of the style when it comes to "how good does it
look".

But there are other important aspects. First of all, the fonts are included in the style, so you need to
check carefuly the file sizes of the font files. Although the fonts are usually vectorial (ttf fonts are
recommended), they are also quite big. Sometimes the differences between fonts are huge, for
example Arial is 750kB, and the supplied Helonia only 39kB! Moreover sometimes different faces
are supplied – e.g. Arial, Arial Bold etc. When you have a style of 400kB, adding another 750kB of
fonts is a huge waste of space. Not mentioning that Arial is so big mostly because it contains several
different characters for other languages, but we can easily survive with just the basic ASCII set.

Secondly, the copyright rules – the font comes with the style, so one may think it is a violation of
copyright rules unless the font is free. It is kind of a grey area, but still...

Ok, back to the Editor. The main "Fonts" item shows all of the fonts in the style as shown in the
example above. There are 8 of them; normal, bold, italic, small, large1, large2, large3 and large4;
these are used in other elements of the style. In some cases you may select one (e.g. you can choose
a font used for the title of a window), in other cases the particular plugin selects the one it wants for
particular places. Always remember – the plugins only use these 8 fonts, nothing else. This way the
style can ensure it will always be good looking.

Note that although there are 8 fonts, they can all point to one single "ttf" font definition. That's the
best option when it comes to size obviously. In most cases you will want all of them to be "Helonia"
for example, but then you may need multiple faces – normal, bold and italic. The size is then
irrelevant, because the fonts are vectorial, so they can be rendered in any size, therefore the ttf will
be included just once.

Here's how it looks for one particular item, the "large3" definition:

For each font definition you can specify:
• the character width and height,
• the spacing between characters,
• a user font file (click the Folder button and browse to it to [Open] it,
• a Bold or Italic attribute by clicking the buttons,
• a system (shared) font from the scrollable list.

The "System font" switch is worth mentioning – if you enable it, the font will not be included in the
style. The style will therefore be smaller and copyright laws won't matter, but you will be relying on
the font being installed on the user’s particular computer. That doesn't seem a good idea, so this is
not recommended.

Components

 There are 19 Component types in the Style Editor, together with a set of Global settings. The 19
Component Types are listed here, as seen in the Browser. Here are a few examples of a window
containing different components:

Each component looks different, yet they are rendered in a very similar way and have similar basic
features. Each component contains one or more "Images", the main one is called Image, then you
can have some additional ones, such as Large caption or Selector. But the interesting part is that the
Image and Large caption definitions work in the same way.

Now, in the Brower, select Window and expand the Caption elements if needed, it will look like
this:

The title says "Main control painter" and you have 4 subimages: Image, Small caption, Normal
caption, Large caption, all of them seem to have the same subcontents and they really do. Image is
the main background of the window, captions are optional and really mean caption (or title).

"Control painter" and component styles

Now select the Image and you will get to "Control painter" with this view:

You can now see several values and 7 images called painters, and you may wonder what do these
mean? These are the component states. They are not used for the Window element and it will be
easier to describe them for a button instead, so select "Button" then "Image" in the Browser:

First you may notice that this "Control painter" looks the same as in Window indeed. But back to
business. The background used is that defined for the Window / Image element a "wood" image in
this case. This is just to make things easier as all components can be displayed in a window, so it is
usually good to picture all components on the Window background.

But while the control painter of a window contained 7 exactly same images, here it is not the case!
Unlike a window which is simply a window, a container for other components, button can have
different states. These states are listed as subitems of the "Image" item as well as under the separate
images. So what do these mean?

Normal means, well, normal, nothing is happening.
Focused means the component has a so-called keyboard focus – the user probably clicked on it and
now it responds to keyboard events. This deserves some kind of highlighting, because otherwise the
user wouldn't know which component has the keyboard focus!
Highlighted means the mouse cursor is pointing to the control or the user dragging it somehow.
This doesn't necessarily require highlighting, but it looks good if the component looks different
when the cursor goes over it, it kind of attracts user's attention and says that "this does something".

Clicked means not only the mouse cursor is pointing to the control, but a mouse button is actually
pressed. It's pretty obvious to imagine what this means for a button for example.
Disabled means the component is disabled, it doesn't react to mouse nor keyboard. In most cases
such control would be displayed with lower opacity, including the content. This has been discussed
in the general style properties.

These are only 5 states, but they can be combined! For example, a component can have a keyboard
focus and the mouse cursor may point to it. In most cases it doesn't matter, the keyboard focus is
just more relevant, but you may want to reflect this.

Since there are 4 flags (focused, highlighted, clicked, disabled) you may think that there should be
16 states! But most of these are irrelevant – if a component is disabled, it cannot have keyboard
focus and mouse state is irrelevant too. When a component is clicked, it is most probably focused
too. But, you can click on a control, hold your mouse button and move the mouse elsewhere in
which case it is clicked, but not highlighted!

The following example shows that you can really easily have different images for each state:

So, how can I make the component look different in different states? By using 2 instruments:

1. Use the Alpha values – this will simply change the opacity when the component is in
specific state. In most cases you will use this method at least for disabled state. In the
example above you can see the "disabledalpha" is quite low compared to other states and so
is the image of the disabled state (last one).

2. Using different painters – the "Normal" state is the only item in the list on the left, which
doesn't have a checkbox. This is because there must always be at least one painter, for
normal state. But if you enable another one, you can make the component look completely
different in every state. Such as in this example:

So now what remains are the 4 values just below the "Control painter" title, border and content
offset. These control the area "inside" the control, where the content will be positioned. This is the
area where the text, graphics and subcomponents inside the component are placed and is indicated
by the gray rectangles in the images below. You can turn off those guide lines using the "eye" icon
in the Editor's title bar.

"Painter" and the rendering
Here we get to the bottom of things. We now know that each component is a compound of a few
"Control painters", each of them defines how to paint the control according to the control state, but
who is actually doing the painting? A painter! But how to edit it? Well, just select "Normal" in the
list in the left for example. Now let me scare you with a screenshot first :)

Don't worry, it's not that bad. The painter contains 2 panels, "Rendered" and "Image", each has an
enable button (the power switch almost at the end the panels title bar), which means you can use
either method or combine them. So there are kind of 2 rendering engines, let's describe both.

Rendered

The Rendered panel contains the vectorial engine – well, it's very simple, it lets you render the
component using a rectangle (with potentially rounded corners). That's it. Here's an example:

If your screen does not look like this, click the "Collapse" buttons at the end of the panels’ title bars
to collapse or expand the panels. In the lower part of the screenshot you can see the component
with different sizes and different states. Note that although all painters for the other control states
are disabled (unchecked in the listboxes in the Browser), each state still looks different because of
the alpha values as described in the "control painter" section above.

Now to the parameters:
• Width & height – minimum size of the painter. This in effect controls minimum size of the

component.
• Corner size, colors... - well, these are pretty obvious. But don't forget each color has "alpha"

parameter, that one is very important here.
• Rectangle border – this may smaller than the rectangle. Why? Because sometimes you may

not want the rectangle to be as big as the component.
• Gradient – it is not reflected in the Editor (technical stuff, excuses :)), but it makes the

rectangle painted with a gradient, which usually looks better. But it also takes more CPU, so
be careful!

Image

Image (or texture) based rendering is the kernel of the engine. You have 2 ways to setup a texture –
you can draw it in an external editor (e.g. Photoshop or Gimp) and load it as JPG/PNG/TGA or you
can generate the texture. To use an image file, select the "Image" tab like this:

Here you just need to click Load image and select the image, which will then be a persistent part of
the style. And here comes the interesting part – corners and stretching/patterning.

Imagine you create a rounded rectangle 40x40 with 10 pixels corner in your external editor, save it
to PNG, load it in the Editor. How would you expect the engine to paint the component if it is
400x400? Resize it? But that would create an ugly rounded rectangle with 100 pixels corners!

So instead, the engine cuts off the corners, left/right/top/bottom part and renders each section
separately. First it paints the corners without any resizing. Then it resizes left and right parts
vertically and top and bottom parts horizontally. Finally the interior is resized in both directions.
And resizing means either stretching or patterning – stretching is obvious, patterning means the part
of the image is repeated allover again until it fills the space.
This way the corners stay perfectly sharp, sides are resized only in one direction and only the
interior is resized in both.

In our example we would need to specify corner size of 10x10 in the Editor. Look what happens if
the corner size is too small:

And then when we use patterns, it becomes even worse:

Generated

The Editor contains an integrated generator, which creates the typical button-like images, but it has
curves for almost anything, so you can get quite some crazy results from it. This way the Editor
doesn't use the texture you supplied via a PNG file for example, but instead it creates an image on
its own. To generate the texture, select the "Generated" tab.

You can play with gradients...

...border and interior shapes...

...light contours and more...

With both the image files and generated images you can postprocess the results using contrast,
saturation and brightness modification:

Possibilities are huge here, so I'll leave it to your experimenting.

Colorization and pixel operations
Remember the 4 colors users can change? Well, here we are with the explanation.

Imagine you paint a style, and a particular component will be really really red, because you like it
that way:

But some people don't like red so much, they want yellow! So you have several red components in
your style and such person will just hate it, because it's red, it's ugly! :)

You can either change the style, which means a lot of work, or "colorize" it! The user can specify 4
colors, so since he likes yellow, he can set one of the four colors to yellow and all you need to do is
ensure the style will change the color accordingly. And our engine makes this extremely simple –
each painter has colorization sliders for all 4 colors, when 0, nothing happens, but if the value is
higher, the painter gets colorized, like this:

How does this work? The engine takes all colors used in the rendering and modifies them. In the
image above the "Rendered" painter is used with black border and red interior. So before anything
happens, the red is processed using yellow and in our case the "Change to Main3" slider is at
maximum and the Main3 color is specified to be yellow (have a look back at the Colours section),
so it just wins converting the yellow to red. With images it's more complicated and it needs to be
performed for all pixels in the image, but the idea is the same.

Now what happens if the element's color wasn't red but grey? Same thing, yellow wins. Now note
the little checkbox called "Colorize even saturation". Disable it and this is what you get:

It didn't work, because grey doesn't have any saturation. Simply put, a color can be defined by
RGB, that's how our displays work, but for humans it is a little hard to grasp that concept. So there
is an alternative colour representation called HSV (hue+saturation+value), which is way easier to
use. Hue controls the color, red, yellow, or whatever. Value is the brightness, 0 makes it black, 255
white. Finally saturation controls amount of "color", with 0 the color is grey (or black..white), with
255 it is as "colorful" as possible.

So, if you have a grey rectangle, then all pixels have saturation of 0. The colorization changes the
hue from grey to yellow, but the saturation is still 0, so it is still grey. But when "Colorize even
saturation" is enabled, then the saturation is modified too and grey becomes yellow. The only thing
left from the original color is its brightness and alpha.

It's necessary to say that you can colorize each painter using more than one color, but it takes CPU
when the style is loading and it probably won't help you much.

The 4 colors

Now the question is, which color should you use to colorize particular element? It's up to you, but
we suggest following the rule shown in the Style Configuration window that users use to change
style, dimensions and colors:

Color 0 : Background (window, menu...)
Color 1: Title background (window caption, menu caption...)
Color 2: Editors – background of control, edit, tracker, knob...
Color 3: Selectors – indicators in trackers, knobs, progressbars

Operation

By default the rendered image is alpha-blended with the background. So it kind of overlays the
background. You can use different pixel operations, but these will take more CPU and most likely
won't be very useful.
It is a good idea to set "Copy" for windows and menues, or just anything that covers the whole
rectangle leaving nothing under it, because copy operation is faster than alpha-blending.

Components with captions
We now know that a painter performs a rendering for a single object and the right painter is chosen
in control painter according to component's state. Many components have more objects in them, the
main Image and a Caption for example, so let's see how that works.

The Component Image has its own content. The Caption appears on top of the Image and typically
contains some text (for example, the component name) and other content (caption buttons). Just
select a small caption painter for example:

The "Caption" object is very similar to "Image" object, it has all the alpha values, 7 control states,
but it also has some more parameters – font, text color, parameters of the content position. And also
it has 2 heights – caption height and caption image height. The idea is that the caption can actually
be higher than what you see, so you can get the right bottom border.

In all cases a component (e.g. window) with caption is rendered like this:
1. The main Image is rendered covering the whole component.
2. The caption is painted on top overdrawing the background.

Note that such a control can have 3 different captions (small, normal or large) or none at all. The
choice is made within the plugin’s code.

Additional compound components
We will now go through a few more components which has more than just an Image painter, just so
that you have a head start, but really, it's all over the same thing again ;).

Menu
Menu is another component with a caption and in most cases these will look quite alike. It however
has 2 more control painters, Selector and Selected item, which work exactly as any other painters,
so no news here ;).

Checkbox
Checkbox has the default Image and Image for state On, Image for state Off and Image for state
Grayed. The interesting part is that none of the additional painters are resized, they always have the
same size. After all, these are just the checks on the left of the component. Another interesting part
is that the main Image can actually be empty, or more likely empty for the normal control state.
Why? Look at a checkbox, it's just text or some other content! It may need some highlight for
mouse or for keyboard focus, but normally nothing is going on there really, unless you want to of
course ;).

Tracker
Trackers, also called sliders, have 3 painters – Image as usual, but then there is Selector and Value
button. Selector is interesting because it may not be completely painted, it depends on the current
value of the slider. Value button may not even be present, if it is, it is painted on the right of the
control and is clickable resulting in popup window for text input.

That's it!

Well, we are finished for the moment. Don't hesitate to ask at info@meldaproduction.com, but
support for this thing may be a little limited. Anyway good luck and we are looking forward to
seeing your styles!

mailto:info@meldaproduction.com

	MTexturedStyleEditor - User Guide
	Installation
	Getting started
	Global style settings item
	Default control sizes, Minimal control sizes
	Icons, Bitmaps, Control checkbox
	Cursors
	Style Metrics
	Colours
	Content Rendering
	Fonts

	Components
	"Control painter" and component styles
	"Painter" and the rendering
	
	Rendered
	Image

	Generated
	Colorization and pixel operations
	The 4 colors
	Operation

	Components with captions
	Additional compound components
	Menu
	Checkbox
	Tracker

	That's it!

